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of the report's findings or conclusions.   It is published only for the exchange 
and stimulation of ideas. 
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ABSTRACT 

An approach to digital nonlinear prediction is proposed and analyzed. 
The basic relations are developed. The nonlinear operator is obtained by 
quantization of the data. 

The model is developed in terms of occupancy of data cells in N-space 
Extensions to increase occupancy and reduce error are formulated. Illus- 
trative results are included. 

A comparison with linear techniques is made and over-all conclusions 
on error, quantization level, length of data required, time invariance, etc. 
are provided. 
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1.0 INTRODUCTION 

Methods to effect statistical prediction have involved poly- 

nomial fitting and correlation and/or spectral analysis.  Both can use 

a minimum mean square error criterion and result in a set of weights 

as an optimum linear operator.  In both cases, calculations of the 

weights based on knowledge or computation of the pertinent statistics 

is made. 

Our concern here is with a non linear approach which involves 

any intermediate determination of the statistics.  It also offers a 

readily available means for judging error and adjusting for an improved 

prediction.  Being a non linear method, the results should be at least 

as good as a corresponding linear technique. 

To obtain the desired non linearity, a quantization of the 

data is required.  Of course such a quantization itself degrades the 

error possible with the technique.  The technique as applied to digital 

simulation forms a variation on an approach discussed in Reference 1. 

We now discuss the approach. 

2.0 THE MODEL 

We let t be the present time and T the total interval of 

data for processing.  We let a be the time advance of prediction. 

Without loss of generality, we take the data interval as  [0, T] and 

consider the usable past at any t  from t to t  - aN-: .  For equally 

spaced sampled data aN-x • (N-l)6 where 6  is the sampling interval. 

These definitions may be summed up in the following sketch 

Author's Note 
H 
The work reported here was originally considered by the author in 

the summer of 1960 while at S.T.L.  Other matters prevented a proper 
evaluation and summary at that time.  The present report represents 
a current effort to fill this need. 
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Prediction Range 

Let the continuous parameter time series be X(t).  We then estimate 

X(t+a) by 

X* (t+a), the predicted value at t+a using X(O); O&t 

In the sampled finite past case we have 

X*N(t+a), the predicted value at t+a using X(t-ai); i=o, 1,   ', N-l 

i.e. by {Xo, X_i  , X_2   ', X-(N_!)j. 

Although A- a=ai+i-aL  may not be equal, nothing is lost by assuming so, 

since the average value of the £a is constrained by the sampling theorem. 

We take 

X* (t+a) = F [X(t), X(t-6), ••', X(t-aN-i)] where 

F is a time dependent non linear function.  In this case we can always 

make the instantaneous square error e = (X(.t+a) - F[X(t), X(t-ai ) ,     , 

However since F is to be used when £(t+a) is not available, it is better 

not to have F time dependent, Hence we consider a range of times over 

which a time invariant operator F must minimize the mean squared error 

given by 

„ T-a . ... 
"^ = 1        (X(t+a) - F[X(t), X(t-ai),' ', X(t-aN.i)]) 
'a   fi   J a 

dt 

with [aN_i , T - a] the maximum range over which to consider error or in 

other words over which we can distinguish a "present" value.  In the 

above 0 = T - a - aN i.  As seen the value of X* (t+a) depends on the 
a 



number, N, of data points used in the memory. 

We replace  F by an infinite series of terms whose orthogonality 

is invariant to X. Thus, 

F - £ An fn[X(t), X(t-ai), ..., X(t-%.x)] 

where, independent of X values, 

T-a-a*^ 

.T-a 

a*t. 

$| ] $    1 dt - 1; n = m 
n    m 

= 0; n i m 

Then minimum e s gives, using dett2 • 0 and the orthogonality of the 
a 9A 

Un) 

{$}, 

,. T-a 
x(t+a) $ C ] dt 

T-a-aN_1    aN_i 

X$n  = < X, $ > 

•„3 < i , t > 
n  n 

It is impossible, however, to have completeness using such a represen- 

tation on any X(t) (i.e., for continuous valued X). However, quantization 

of X provides a realization of the desired orthogonal set for all X(t). 

In other words quantizing X allows construction of a {$ } set for all X, 

the approximation being dependent on the fineness (degree) of quantization 

As X is more finely quantized, the 

F[X(t), ... , X(t-aN_1)] - EAn $n [X(t), ... , X(t-aNi>] 

for any X(t) with thf {$ } orthogonal and independent of X. 
n 

t See Reference 1 



The orthogonality depends however on the range 3 , chosen.  We then have 

e * - 1 
a 

r.T-a 

8a J aN _j 
(x(t+a) - g An

$
n [ ])*dt 

= ^(f"a x^(t+a)dt-g0nA^) 
pa   aN _j 

/- fT"a  x* (t+a)dt - E (T    x(t+a)$n dt)
2 

°  T-q-Ba  

with Bn = rT"a   . s 
T-a-ga $n dt 

We see that An represents the projection of predicted X values 

in the $n direction of the l$nJ space.  Thus ea  compares the true 

value  JT  a    X2(t+a)dt with 2 ($n j An
2  where j!n represents the 

B ^cc B
a Ma 

probability of getting An over P_.  For a fixed t, X(t+a) is estimated 

by a single An for some §n° 

3.0 QUANTIZATION and REALIZATION 

If for each n, the $n [X(t) , X(t-ai), •••, X(t-On.i)] = 1 

or 0 as a function of the N - dimensional argument of X values, then 

An = [X ,$n1  is a conditional expectation.  That is the average of 
3n 

X(t+a) conditioned on the occurrence of $n(t) = 1 as t varies over B 

and Bn counts the number of such occurrences.  Let us now consider for 

equally spaced data the N - dimensional space of iX(t-k6)jN_1  values. 
o 

Let each X(t-k6) range be divided into Q quantum each of width q as shown. 



XCt-a^) 

X(t) 

X(t-36) 

Total number of 

quantum cells in 

X-space is QN . 

X(t-26) 

Let n = 1, 2, 3,   , Q 

We take $n [lX(t-i6)}Q
N_1] = 1 

= 0 

X(t-6) 

if 1x3 
N-l 

a ID;-1 

e cell n 

i  cell n 

Thus if $n occurs at t then we take An as X*(t+a) and An is calculated 

as average of X(t'+a) values at all t' < t times when $ occurs.  The 

{.§ j set remains fixed only if the cell structure in N-space does.  We 

note that the orthogonality of the l$nj is independent of the t range of 

integration.  Also since < $n>$n > = 0 only if $n = 0, the 

A„ = < X, $n > are bounded n   
< $n,$n > 

The  normality  condition Ml  _^ 

Jj'     $n* ( ) dt = JL 
0a T-a-iSL 0a- a 

r-T-a 
$n dt 

T-a-Ba 

depends on the X values that is which member of the ensemble is chosen and 

the span of calculation 0a. We see that h) produces an orthonormal 

set; 0n = [*n,*n]. 

It is useful to rewrite the formulae for A„ and e„a  in a style which no.        ' 

reflects the cell matching imposed by the quantization as reflected by 

•5- 



the  {.$„}   set. 

kn " J"T 
X    (t+a)dt     __   j'     X (ti>n+a)dt 

n Tn 

J       dt 
T„ 

Tn 

where Tn «=  [tt:   §n  [t] =   1,   t  e   [a», -i ,  T-a]}     so  that 

An = x(t+(x) conditioned an occurrence of cell n. 

for sampled data 
Nn 

i=: 
xu^+a) 

L 
Nn 

QN 

and 2Nn 
n=l 

- 3cc 
for for a fixed cell structure over t.e[aN_x, T-a] 

N -1 
so that any [Xjo   sequence can be in no more 

than one cell, 

N "1 
For non-multiple use of data sets [xjo  but allowing overlapping cells 

the total number of matches is still 0a-  However the orthoganality of 

the $  set and the expressions for An and e   previously developed 

rely on the cells in N-space being non-overlapping. 

We also have 

X*(t+a) = TAJn =  Un : §n(t) = 1, t e^^ ,T-a]i 

lsn<Q
N 

and 
3 

T"3" = £a [x(ti + a) - An f 
i«l l_ 

&a 



Incidentally we may view the quantization as a means to set up a 

special set of orthoganal functions for any X by writing $ as a 

product given by 

$n,m,k,'' • ,^[X(t) ,X(t-ai ) ;' *' ,X(t-as .j ) ].*B[X(t) ]*m[X(t-ai) ], 

Finally ea
a - (X(tfa) - F[ ? -  (X(t+a) - EAn$n)s 

which can be written (X(frfa) - EAn$n - (F[ ] - IAn$n))
8 

or   (X(tfa) - F - (DVn*n - F))a 

These forms indicate two kinds of errors. 

(1) Optimum F is not sufficient, i.e. future not predictable 

from the past (not usual). 

(2) EAn$n 
is not * good enough approximation, 

i.e. orthoganal set not complete. 

For $n derived via quantisation, the level q plays a roll in (2) 

and indeed contributes a quantisation error as well. 

Finally wa remark that when F • F(t) that is the $n are changing 

with t, the number of possible AR - number of possible cells > Q
N' 

3,1 Quantization Error and Data Calibration 

Givan a Joint distribution over data, we can always construct an 

orthonormal function set relative to the distribution. For example, 

if X is normally distributed, we choose the 8n as Hermite polynomials, 

In dealing with time series we interchange time and ensemble averages 

with time averages taken over sufficiently long data stretches 

providing the process is ergotic end so stationary. With X normal, 

the optimum predictor is a linear one, This result can serve as a 



reference  to  the  non-linear models. 

Approximating F via quantization gives 

An = <X,$n;L> 

where L is the peak to peak signal variation in the interval used. 

We choose the quantum step q so as to produce the desired e  and 

divide the X range into Q = L/q quantum steps. 

~L/2 

--AVG. Value 

Quantization thus converts X(t) into a step function S(t) where any 

step level S. results from X values given by S.-q/s£X<S.+q/2.  The 

quantization error, e, is a random variable with the X distribution and 

-cl/s ^ e < q/3 .  With q small enough we assume that e is 

approximately uniformly distributed in any one interval so that the 

phase (ensemble) average of e is given by 

AVG.(e2)   =  1   r'
q/s 

q 
•* J e2de =  2 £_ =  qa/12 

q/a q 3x8 

12 KqJ 

If we assume 1024 divisions for + or - values (a representative value 

for some A-D converters) then Q = 2048 and 

AVG.(ey) ~C L 
V 2 

Thus writing the mean square error of quantization as K q ,K, a constant, 

-8- 



the mean square error in the prediction model e  > K q 

From 

7~2~ .. i  rT_a Q 
a   -=— 

9a 
X*(t+a)dt - EBnAn^ 

T-a-3a 

if quantization level q is too large, An0 -. X for some single n=n0 

and An - o, n <,   nnj 0nQ - 0a, 

-y  . .  .   ,.T-a 
~  *- ^ J (X(t+a)-X)a  dt) ~ 0(K'qa) , K' > K. 

Of course ea may be large with q small for operator F not near 

optimum. 

It is well known that in general the non-linear operator extends 

bandwidth due to intermodulation of components. Also, if we consider 

quantization error in N-space as a distance d, then 

] -   /N th 
max  / Z q.2   with q. the quantum level in the i  dimension. 

V i=i * 

If q^ = q for all i, 

d   - (Nq3)^ = A 
max 

For preserving constant distance (error), we have 

q ~ _1_ 

N* 

so that the more past samples used to form a data set {XJ   , the 

smaller q required to maintain the quantization error. 

With a, Pa,N,q variable there is a range of possibilities with 

various influences on e^ 

As N increases, q should decrease.  With decreasing q and increasing 



N the 3 , number of matches over |3 , should drop.  This means that the 
N -1 

number of matches of data sets [X(t'jo   to some reference set 
N-l 

[X(t)}o  , t' < t decreases.  Thus although quantization error may be 

t    N -11 fixed, variability of the estimate of an An (associated with [X(t)o j 

may rise due to the reduced number of matches.  In general we desire 

as many cell matches as possible at each t. 

For example, unless q is large (and so larger prediction errors) or 

a trend sensitive parameter, such as conditional expectation function, is 

used, no reasonable prediction can be made on trend type data since 

obtaining cell matches becomes difficult or impossible. 

One method to increase number of cell occupancies involves using 

multiple use of data and/or overlapping cell structure with time. 

These procedures allow for time varying i$n3 sets and form a degression 

from the theory presented above.  Details of implementing such 

procedures are discussed in the next section. 

Another way to improve cell matching is to deal with essentially 

trend free data using polynomial interpolation techniques.  Simple 

linear calibration may be sufficient. 

The calibration of the input data can be given as 

X(t) = ay(t)+b = L(y) 

where L represents a linear operation a(ro) and b are known factors 

which can be time varying. 

In the prediction model we operate an X(a), a £ t with F to give 

X*(t+a) so that in a 1:1 manner we have 

y*(t+a) = X*(t+q)-b 
a 

•10- 



4.0  METHODS OF ESTABLISHING CELL OCCUPANCY 

As noted above we desire models which increase cell occupancy. 

This involves basically 

1. defining the cell structure 

2. establishing occurrence of occupancy 

W: r.ow discuss three variations on dealing with these two factors. 

1) This definition establishes from the next new data set left 

N -1 
from the [Xjo   data sets remaining after having filled all previous 

cells set up.  This allows no multiple use of data and reduced amount 

of cell overlap.  A data set defining a cell is taken as the center 

of the cell.  In order to maximize the number of cell prediction the 

data sets are used starting first with the data set associated with 

the current time, t.  The total number of sets equals IB-. 

2) This is a variation on (1) which allows multiple use of any 

N -1 
set [Xjo   for matching except those previously used as cell centers. 

Thus both multiple use of data and cell overlap occurs.  We have 

K 

K(number of cells setup) -•' 3a £ £ dnj = total number of sets used 

j"l N-l 
in the K setup cells where dn^ = number of matching [Xjo    sets 

into cell setup at n-. 
j 

If we could essentially assume no cell overlap that is a fixed 

t$nj set (fixed cell structure) then for (1) and (2) we would have 

        K 

ea
2 = 1   £ (X(tt +a)-Ai1)

2 

K j=l   j 
dij (a) 

Aii - i  £ x(tj.+a) 
J   dij (a) ij-l   J 

11- 



3) Another variation takes all past sets as cell centers so 

that K = g .  This method gives more cell overlap and multiple 

use of data but maximizes cell occupancy at each t in E^N-I ,T-al 
N-l 

and places the center of the cell for t at lX(t)io  at each t. 

Briefly in summary (1) tends to minimum occupancy (overlap) with 

the maximum of these at current time t while (3) produces maximum 

occupancy (overlap).  We call Method A, Approach 3) and Method B, 

Approach 1) together with cells held non-overlapping.  We first 

discuss Method B for 6*  and An.  We also include another 

variation called Model C. 

4.1 Method B 

With fixed cell structure that is l$nJ set fixed, we have from 

before, 

ea
2 = i_ r fT-a 

Pa 

with  sampled   (discrete   time   series)   data 

Xs   (t+a)dt - E (J^ „ x(t+a)$n [ ]dt^ 
T-a-0a ° SJT-a-gfl 

3n 

  K     tik (a) ~      K 
ea

a  = i_    E    (2     '  (X(t, +a)   "A, )3);   pa = E    nk(a) 
~      k=l j-1 Jtc Jlc k=l 
0a 

~    nk nk 

with             Ank =  l/3a E    X(tjk+a)§jk =    E X(tjk+a) 
 lfi  Jzi  

nk nk 

l'*« E  ,   $jk 

so that % 

T5 •    1      ( E    X2(t +a)   -    E    n Aj,3^) 
a      ~~   Si-1 n k-l   k   kJ 

a 

•12- 



1  ( E *<t 40) - E C E X(t4,+a)] ) 
;   Si-i    n     k-i 1-1   jk    y 

F. 

The matchings (for each a) to the cell setup by past set {x(T)}N-1 

taken at present time T(i.e., n ) produce An as X*(T+a) for each a. 

4.2 Method A 

As noted, the method sets up each of the 0 data sets as centers 
a 

for cells.  The approach thus allows multiple use of any data set 

{X}Q~  and overlapping cell structures. 

Now, 

3* I a. 

a  e 
l  E  [x(t +a)-A ? - JL E [Xs (t -fa)-2x(t +a)A +A 2] 

n3"! 
n    n 

K   n=1 
a 

n   n n 

for each of the 8, n=l,2,...,6 where we take 

*.« r. a 
E  x(t. +a) ;   £  -t * S 

*n(a)  j-1 
jn n»l 

n    a 

Then, without orthogonality effects allowed since the {$ } sets 

correspond to overlapping cells, 

I a 
1  E 

3 
xJ(t +a)-2X(t +a) E X(t. +a) + / E X(t. +a) n                n . ,   jn      . ,  jn ___ J=1 

n 

-13- 



4.3 Model C 

In order to increase further the number of occupancies and so 

hopefully reduce e  averaged over a for a min < a < a max, for the 

cell specified at the current T value, we consider sequentially 
N-1 N"I 

{x(T-j6)}   as potentially equivalent {X(T)}     data sets with 

t r    T
N_1 

adjusted a values . This is valuable when tX(t)j   has none or 

few matches. For a the data sets then used for equivalent prediction 

points are those at t <.  T-cu We designate the corresponding data 

sample numbers as nT and nT . where t. = T-tt-lA where 6 is the data Tj       J 

spacing. 

Thus, at a using the set at nT .3 we use a. 
= a+j6? j = 0,1, ... ,R 

N-l 
and look for occupancy of the cell determined by lX(T-j6J    by the 

sets lX(t)j   , t < T - 16 that is for n < nT .. o j 

At j the maximum a value possible as in previous methods is de- 
N -1 

termined by a    = nT ,-n where n are the matching data sets fx] J     max. ° o 
J 

to {X(T-j6)}N-1 o  The minimum a in a    = i6. 
0 min. 

J 

We take        a 
max.        

e •  1     S      e -3    for each i. 
j  S- aj=a .    aj 

max.     min. 
J        J 

Then we choose the nT . and associated matching sets which give min e. 
j  J 

and calculate the A set for the a .  < a. < a.    corresponding to 
n mm.    i   max. 

J J 

the a.  If a    < Ot,  , then for nT . < nT . we choose the next lowest 
max.   max ' 1    J 

J 

e. which has a    > a   • The process is repeated until a   = a 
I max.   max. max.  max 

J      J J 

or the j range is depleted. 

t Of course increased occupancy must be weighed against basically higher 

ea as a increases 

•14- 



4.4 Adaptive Control 

As we have seen, parameters N, q, 8 influence e  . It is thus 

useful to have criterion, even if only crude, by which to judge such 

effects. 

We have noted the error amplitude resolution in the sampling 

process is q 2/l2 where ci  is the amplitude resolution or imposed 

quantization range q. For example, with binary data and q = 2 , 

the error is 4  /3. 

Referenced to the original (unquantized) data before sampling 

—g  
and excluding other error sources, the total error  e    is approxi- 

mately e a + q2/l2 with 

o s e 3 ^ 1 a    r 
T n a 

X*ft-Hx)dt^ 1  Z  X2(tn+<x) 
T-a-8 *  n=l 

a       a Pa 

Thus, we may usually expect 

a. 
qa/l2  £     e2       £  q2/l2 + 1       Z    X8 (t +Cl) 

TOT        * " n=1    n 
a 

       a        Q 
With e 2 - _1_ Z 3?(t +tt) - I g.A 2 and qs/l2 not truly independent 

Fft 

errors since e 2 depends on q, we might have  e2  > e2  for example. 
CX TOT   CL 

From 
7* = X2(t-hx) - Z  [ Z X(t.,-+a)]2 a k=l  J-l   Jk 

nk 

•15- 



as  n    -• o   (no  cell matching)     e 2  -* X2 (t+cc) . 
K CX   

We may then consider using the values q2/2 and X2(t+a)  as bounds for 

testing e 2 when changing q, N., |3  to determine acceptability or for 
U> LI, 

improving  e 3 to obtain X*(T4a) . 

4.5 Population of Cell Occupancies 

With Q steps of magnitude q and N past point data sets there 

are QN possible cells (i.e., A ' s using fixed structure). The per- 
n 

centage actually used is much smaller, say less than 1%  on finite 

sections of data.  In digital simulation it is not required to store 

all the possible or even expected (A j set. 
n 

For example, with N=2 and independent normally identically dis- 

tributed data at X . Xn_i for all n with a standard deviation of a n  " * 

the number of A drops from Q2 to 3ff('2Qq-3a) , qQ/2 > 3a.  An estimate 
n 

of 3a can be taken as the largest amplitude increment between succes- 

sive samples. 

Runs have been made on data to determine and remove trends using 

data types such as 

(1) monotonic increasing data of a component of velocity sampled 

at 10 times per second. 

(2) periodic high frequency type data from accelerometer residuals 

sampled at 10 times per second. 

(3) radar trajectory position data at 10 times per second. 

A definite X*(t+Ct) versus q relationship was difficult to 

establish for various ranges of N and 0 . 

-16- 



4.6 Comparison of Methods A and B 

It is convenient to display errors for comparison by 

"L  rms error • % ( e a)  =  / e„2 

and %  actual error - % e * = X* -X a     "T" 

Due to the flexibility of centering cells, it is expected that A 

gives better X* (low % e *) than B so that the possibility of cell 

occupancy is more likely. 

It is recalled that c   was taken with respect to prediction (x* = A   ) 
a   n 

" T 
point sample nT only while  e  in Method A was calculated over matches 

not only to data set for nT but matches to data sets for all n used. 

It is suggested a revised method A, say A1, be examined to remedy 

these situations by (1) allowing actual predictions to be calculated 

over the data range and not just at nT and (2) calculating e 2  at 
a 

each prediction point, nT ', from matches of past data sets to the data 

set at nT ' only. At each nT'.IX(T')}
N-1 is considered fixed allowing 
o 

A • <X, $ >  to be used with cell center fixed by fx(T')}N"' which 
n       n ' u     o 

<$ ,$ > n n 

shifts with T' to make [A } set time varying with nT'. 

5.0 GENERAL LINEAR PREDICTOR 

"General" is taken to mean no assumption of stationarity. The 

use of the general linear predictor provides a basis of comparison 

for the non linear predictor. 
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For continuous (nonquantized) data the form of the basic system 

of equations for determining the coefficients of the optimum linear 

predictor (operator) are 

T-CC N_x r  rT-a ^ 
X(t-T ) X(t4a)dt =  E  (     X(t-T ) X(t-T )dt ) a 

<JQ       n V J        n      m   y m u m=c    o 

n=0,l,...,N-l 

which for sampled data becomes (with a slight abuse of notation) 

/Xk-nXk-ha= "*  (/VnU'^'1 H 
k=o m=o   k=o 

It can be noted that an analogous form of equation appropriate to the 

nonlinear method is given by 

pa M    a 
£  l„ X,. -   Z  [2 $ (X, ...) $ (X.,...)]A ; n-0,l,...,M 

n k-rtx ,    n k,     m k      m k=o m=o  k=o 

If we define R(§,r|) fa Z    X. Jt  , we have 
k=o   5  ^ . 

U(n,-a)}  =  ((R(n,m) )) {a } 
m 

(nXl) (nXm)   (mXl) 

so that 

{am} = ((R(n,m) ))_1  {R(n,-a)3 

with ((R(n,m) )) and [R^n,-a)} both functions of a and the point from 

which prediction is made, 

With allowance for variable a, a comparison with the nonlinear 

method indicates that for the same amount of information, linear pro- 

cessing time is higher by a factor as high as 10. 
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We remark, that calculations at data rates higher than that pro- 

vided can be afforded in all processing modes by a sliding Lagrangian 

fit such as a cubic. 

Finally comparisons are for all prediction points having one or 

more matches in the nonlinear processing. Also, the rms values of 

actual errors taken over these points are also found useful. 

6.0 OBSERVATIONS, REMARKS AND CONCLUSIONS 

It was found useful to use TT~ -  r.m.s. value of observed error, 
o 

—a- h e    calculated over matches 
a 

associated with a given point of 

prediction 

A 
and e  • r.m.s. value of actual error, 

A 

((E*A)*) averaged over all x: x 

available as point of prediction 

is changed. 

6.1 Linear 

For small a , the average eA increases with N as should 

be expected since the linear operator becomes potentially more limited 

as the extent of the past (memory) increases. The error ~  increases 

by about a 1.6 factor as a goes from 1 to 2. 

6.2 Nonlinear 

A 
For probability of occupancy as low as 5%, the e remain reason- 

ably fixed. For q low enough, e decreases with increased N as the 

occupancy probability drops.  In other words, at each prediction point 
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the e  decreasing measures the degree of correct selectivity. As N 

increases with q high enough, large variation in actual error X - X 

A A 
is allowed.  Indeed e decreases with increasing N while e increases 

A A 
A 

by a factor of 1.5 as a goes from 1 to 2. As q decreases the e and 

~ agree. As a increases the q value necessary for this agreement 

increases. 

For low N and a (say 1), eA can decrease with |3r while ~e~ 

increases for the same q.  Both k    and e  reduce with increased fs 
a     o 

A 
(sampling rate) for the same effective 8 ', N, a. Also, e and e 

a A     o 

appear relatively insensitive to the interval between prediction points 

or to the over-all span of these points, the latter effect relying on 

the degree of stationarity present. 

6.3 Linear Versus Nonlinear (for a given data sampling rate) 

Although the linear procedure requires no quantization, comparisons 

with the nonlinear method  are more equitable with the nonlinear results 

when this discrepancy is taken into account.  Basically unless a 

A 
sufficiently low q can be used the e values from linear processing 

are lower as was the case for a • 1,2 and all the N, 8  and data used. 

As q lowers to favor the nonlinear error, the probability of a pre- 

diction occurring falls sharply for the 8- range used. 

The sample conditional expectation obtained with finite length 

records and the lack of completeness with q values > o result in gaps 

in the determination of the conditional expectation on which, indeed, 

the prediction is based. 
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A first and crude step toward overcoming this deficiency can be 

taken via a two point interpolation as follows.  (More exactly as N- 

dimensional interpolation on the data sets {X(t)}    of nearest 

matches could be made to specify X (t+a) associated with [X(T)j   ). 

We let n be the count corresponding to time t as before and 

{xj  and {x}  be the two N-dimensional data sets having the two 
ni       ns 

smallest distances dx and ds   (sdx) respectively in N-space from 

lx}  . We take 

X (T+a) = XCti-kx) +  dx   AX; 

dx+da 

with 

AX = x(ta+a) - xcti+a) 

The minimum mean square error criterion results in the predicted value 
* 

X (t+a) being given by a quantized version (for determining cell 

occupancy) of the sample conditional expectation E(X(t+a)|C) where C 

is the cell whose center is determined by {X(T)}    rather than the 

non-quantized version E(X(t+a)   lX(T)}  ). We have 

x (t+a) - E(X(t+a) | C) - J" X(t+a) P(x(t+a) [ c) dx 
A 

and for sampled data 

x (t+a) = EX Pa(x|c) 

With a finite stretch of data we must consider 

**<V X < W I C) = Kq.k, 
a,c 

•21- 



where K ,   = number of times an X(t+a) value from the 0a sequence 
CC y iC y  C 

of X values lies within the (X, ,X  ) range given that its corres- 

M ••-1 
ponding past data set [X(t)j    enters cell C. 

<£    = number of past data sets which enter cell C over the 
0L,c 

0a sequence of data points. 

We may note here the various first order, joint and conditional 

probabilities as follows^ 

Shortened Notation 
P[X, sx<ix1 | C]-R       =   P fX|C) 
a k     k+l      a,k,c      a ' 

t 
a,c 

VC) = ^c_ 
r a 

P[X, £ X < X, .. C] - K .    = P (C) P (X|C) = P (X,C) 
k    nc+l,    a,k,c   a   a      a 

ea 

p[xRsx<xk+i] =Vk "Vx) 

a 

P[C|X. s X < X, ..] = K .     = P (X,C)  = P (C|X) 1 k       k+lJ   q,k,c     n a 

a,k     a 

where K .   and i, are defined above and K , is the number of 
a,k,c    a,c a,k 

times an X value in the p  sequence of data points lies within the 

range (XR, X^) . 

In Method A1, we have over a range of prediction points 

E P  [X. £ X < X .. Cj ^ P (X. £ X < X, ,.) 
a  k     k+l,    a K     k+l 

•22- 



since the cells overlap.  Indeed 

(Z Pa[Xk * X < Xk+1   ,   C]  -  Fa(Xk £ X < Xk+l)   -   ffi Kakc)   -  Kak 

However, 

SkPa(XkSX<Xk+l' 
C) =P

a
(C) 

* 
Another approach, of course, for determining X  (t+a) could be based 

on the maximum likelihood estimator, this is, on MAX P (X(t+a) | C) 

where C is the cell determined by [X(T)J    , then X (t-ftx) can be taken 

as X,    where k produces the maximum value of K 
V%        m a'k>c- 
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